磷脂納米盤Nanodisc的產(chǎn)品應(yīng)用
Nanodisc納米盤的用途

圖2:膜蛋白同時(shí)具有疏水性和親水性。納米盤可以使膜蛋白溶于水溶液。
納米盤用于模擬細(xì)胞的天然磷脂雙分子層,以此來尋找靶分子(通常為膜蛋白)。膜蛋白是細(xì)胞間通訊的關(guān)鍵物質(zhì),介導(dǎo)基本的生物過程,如信號(hào)轉(zhuǎn)導(dǎo)、跨膜轉(zhuǎn)運(yùn)過程、化學(xué)信號(hào)傳感及胞間相互作用的協(xié)調(diào)。
但首先,我們將分別介紹這兩種納米盤,先從 MSP 納米盤開始。
MSP納米盤
MSP納米盤的其他優(yōu)點(diǎn)
與其他膜蛋白增溶和重組系統(tǒng)相比,MSP納米盤具備許多優(yōu)勢(shì),尤其在配體結(jié)合研究、構(gòu)象動(dòng)力學(xué)分析以及蛋白質(zhì)相互作用研究等方面(6)。納米盤可用于在類似于天然膜的人工環(huán)境中重組GPCR 或轉(zhuǎn)運(yùn)蛋白等膜蛋白質(zhì)。

這些經(jīng)由納米盤穩(wěn)定的蛋白質(zhì)可通過常規(guī)的色譜層析程序直接純化。得到的純化膜蛋白-納米盤復(fù)合物可應(yīng)用于需要接觸蛋白質(zhì)的生理細(xì)胞內(nèi)及細(xì)胞外表面的場景,從而能夠不受限制地接觸拮抗劑、激動(dòng)劑、G 蛋白及其他相互作用對(duì)象(7)。
A:結(jié)合納米盤與無細(xì)胞表達(dá)系統(tǒng)從表達(dá)質(zhì)粒開始,可在無細(xì)胞系統(tǒng)中生成膜蛋白。在整合了初生膜蛋白(8)的混合物中提供預(yù)組裝納米盤。不需要額外添加去污劑,這樣可以最大限度地減少偽影的存在。作為一個(gè)可選項(xiàng),可以將生物素?;蛲凰貥?biāo)記等修飾包含在內(nèi)。
B:去污劑增溶蛋白質(zhì)的兩步重組從合適去污劑中的純化膜蛋白開始,添加膜支架蛋白和磷脂。包含膜蛋白的納米盤可自發(fā)形成,并通過親和或排阻層析法純化得到(6,7)。
C:直接從膜增溶從表達(dá)目標(biāo)蛋白的膜開始,添加去污劑和膜支架蛋白(MSP)。膜磷脂、膜蛋白和 MSP 組裝形成納米圓盤復(fù)合物(5)。此處,獲得了表征膜蛋白群的納米盤復(fù)合物的混合物,可用于蛋白質(zhì)組學(xué)研究。如果需要,可采用親和色譜法純化對(duì)單個(gè)膜蛋白-納米盤復(fù)合物進(jìn)行純化處理。與方法 B 相比,接觸去污劑的時(shí)間明顯縮短了(從按天數(shù)縮短為按小時(shí))。
磷脂的選擇——維持適當(dāng)?shù)鞍踪|(zhì)活性的關(guān)鍵
如前所述,MSP 納米盤的磷脂成分是人造的。這意味著,必須事先確定好構(gòu)成目的膜蛋白所需人工膜環(huán)境的磷脂。但存在多種磷脂可供選擇,應(yīng)該選擇哪一種呢?
對(duì)于這個(gè)問題,請(qǐng)參閱我們最常用于 MSP 納米盤的磷脂列表:
二肉豆蔻酰磷脂酰膽堿(DMPC)

棕櫚酰-油酰-磷脂酰膽堿(POPC)
磷脂酰甘油(DMPG)
納米盤在科學(xué)中的應(yīng)用實(shí)例
MSP納米盤最初是由Sligar及其同事一起發(fā)表的(3,4)。MSP納米盤為穩(wěn)定膜蛋白提供了完美的環(huán)境,使得通過NMR 和 SPR(9,10)等方法研究配體、激動(dòng)劑或拮抗劑的結(jié)合成為可能。納米盤被證實(shí)可以提高 在冷凍電鏡中跨膜蛋白區(qū)的分辨率(22,26)。膜支架蛋白可采用組氨酸標(biāo)記,以促進(jìn)蛋白質(zhì)納米盤復(fù)合物的純化、檢測和固相處理。其他納米盤應(yīng)用的實(shí)例包括共振拉曼(11)、MALDI(13)、非共價(jià)質(zhì)譜法(25)、蛋白激活研究(14)、時(shí)間分辨熒光光譜(15)和蛋白質(zhì)結(jié)晶(24)。重組成納米盤的抗原已被用于提高小鼠的免疫原應(yīng)答,顯示出其作為疫苗的潛力 (16)。此外,“大腸桿菌”的整個(gè)膜蛋白質(zhì)組被重組為納米盤,從而創(chuàng)建出水溶性膜蛋白庫 (15)。在納米盤中重組的蛋白質(zhì)可以轉(zhuǎn)移到雙層膜微胞中以提高 NMR 分辨率(23)。在納米盤的協(xié)助下,甚至實(shí)現(xiàn)了對(duì)可溶性蛋白質(zhì)以及與脂質(zhì)相互作用的蛋白質(zhì)的分析 (20)。表 3 列出了納米盤應(yīng)用的實(shí)例。

參考文獻(xiàn)
1. Douglas, Shawn M., James J. Chou, and William M. Shih. "DNA-nanotube-induced alignment of membrane proteins for NMR structure determination." Proceedings of the National Academy of Sciences 104.16 (2007): 6644-6648.
2. Yeates, T. O., et al. "Structure of the reaction center from Rhodobacter sphaeroides R-26: membrane-protein interactions." Proceedings of the National Academy of Sciences 84.18 (1987): 6438-6442.
3.Bayburt, T.H. et al. Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer. J. Struct. Biol. (1998), 123(1):37-44
4.Civjan, N.R. et al. Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. BioTechniques (2003) 35:556-563
5.Hagn, F. et al. Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J.Am.Chem. Soc. (2013), 135:1919-1925
6.Serebryany et al. Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim. Biophys. Acta (2012), 181:225-233
7.Leitz, J. et al. Functional reconstitution of beta2-adrenergic receptors utilizing self-assembling nanodisc technology. BioTechniques (2006), 40:601-612
8.Proverbio D., et al. Functional properties of cell-free expressed human endothelin A and endothelin B receptors in artifical membrane environments. Biochim.Biophys. Acta (2013), 1828(9):2182-92
9.Glueck, J.M. et al. Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J.Am.Chem.Soc. (2009), 131(34):12060-1
10. Glueck, J.M. et al. Nanodiscs allow the use of integral membrane proteins as analytes in surface plasmon resonance studies. Anal. Biochem. (2011), 408(1):46-52
11.Mak, P.J. et al. Defining CYP3A4 structural responses to substrate binding. Raman spectroscopic studies of a nanodisc-incorporated mammalian cytochrome P450. J.Am.Chem.Soc. (2011) 133(5):1357-66
12. Frauenfeld, J. et al. Cryo-EM structure of the ribosome-SecYE complex in the membrane environment. Nature Struct. Mol. Biol. (2011), 5:614-21
13.Marty M.T., et al. Ultra-thin layer MALDI mass spectrometry of membrane proteins in nanodiscs. Anal. Bioanal. Chem. (2012) 402(2):721-9
14.Wang, Z. et al. Tyrosine phosphorylation of Mig6 reduces its inhibition of the epidermal growth factor receptor. ACS Chem. Biol. (2013) 8(11):2372-6.
15.15. Pandit A., et al. Assembly of the major light-harvesting complex II in lipid nanodiscs. Biophys. J. (2011) 101:2507-2515
16. Bhattacharya, P. et al. Nanodisc-incorporated hemagglutinin provides protective immunity against influenza virus infection. J. Virology (2010) 361-371
17.Marty M.T. et al., Nanodisc-solubilized membrane protein library reflects the membrane proteome. Anal. Bioanal. Chem. (2013) 405(12):4009-16
18.Moers et al., Modified lipid and protein dynamics in nanodiscs. Biochim. Biophys. Acta (2013), 1828(4):1222-9.
19.Nasr. et al., Radioligand binding to nanodisc-reconstituted membrane transporters assessed by the scintillation proximity assay. Biochemistry (2014), 14;53(1):4-6.
20.Kobashigawa. et al., Phosphoinositide-incorporated lipid-protein nanodiscs: A tool for studying protein-lipid interactions. Anal. Biochem. 410 (2011), 77-83
21.Grinkova, Y.V., et. al., Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Engineering, Design & Selection (2010) 23(11):843-848
22.Gatsogiannis, C, et. al., Membrane insertion of a Tc toxin in near-atomic detail. Nat. Struct. Mol Biol. (2016) Oct;23(10):884-890.
23.Laguerre, A. et al. From nanodiscs to isotropic bicelles: A procedure for solution nuclear magnetic resonance studies of detergent-sensitive integral membrane proteins. Structure (2016) 24, 1-12.
24.Nikolaev, M. et al. Integral membrane proteins can be crystallized directly from nanodiscs. Cryst. Growth Des. (2017) 17(3), 945–948
25.Henrich, E., et al. Analyzing native membrane protein assembly in nanodiscs by combined non-covalent mass spectrometry and synthetic biology. eLife (2017) 6:e20954.
26.Gao, Y. et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature (2016) 534(7607):347-351. doi:10.1038/nature17964


